Category Archives: science news

366 Days: The Year in Science

Read below the Science Review of 2012 by Nature Magazine, with Greece making it to the top 22 “leading science nations” with 1% of the ‘most cited papers’!

NATURE_2012-in-review

Higgs boson: Proton-proton collisions as measured by Cern

Also, read on Science Magazine’s Breakthrough of the Year 2012 (Higgs Boson) and the runners-up: Genome Engineering, Curiosity Landing, Bionics, Eggs from Stem Cells, Encode, X-ray laser advances and more!

http://www.sciencemag.org/site/special/btoy2012/

 

 

Industry and academia tie the knot

When I was a student at the University of Athens in the late 90s, receiving funding from the Industry was almost unheard of. Although I was an undergrad at the time, I could see that the general Greek academic perception of collaborating with the Industry was viewed almost as the equivalent of a sell-out. Researchers considered teaming up with the Industry the betrayal of their academic purity.

When I was a student at the University of Heidelberg in Germany, things were different: A fair number of the lab’s grants stemmed from the Industry: the Volkswagen Foundation, BASF, Novartis, etc. and that was seen as an achievement. Our lab was not the only one to work with the Industry. It was a very common theme for Principal Investigators (PIs) in Germany to reach out to the Industry and big pharma, partner up, and exploit the best of both worlds.

When I was at Yale University, the situation was even better: It was now the Industry who reached out to us researchers. I was very fortunate to serve as the co-President of a very successful student society, the Yale Biotechnology and Pharmaceutical Society (YBPS), now called Yale Healthcare and Life Sciences Club (YHLC). Industry sponsored our events and seminars, such as the “Life Sciences Case Competition”, the “Business of Biotechnology Seminar Series”, the “Healthcare Conference” and many others, in order to interact with us and possibly recruit students or form collaborations with research groups of the University.

When I arrived at the Biomedical Research Foundation of the Academy of Athens in October 2009 as a faculty member, a pleasant surprise was awaiting me: The Greek General Secretariat for Research and Technology (GSRT) had just announced a grant call, named “Synergasia” (“Cooperation” in English), which aimed to enhance the ties and cultivate the collaboration between Greek Industry and Academia.

So times are changing. There is a new mindset in the academic world (at the very least in my area of expertise, drug discovery). Recent articles such as Nature’s Scibx, “Small (molecule) thinking in academia”, and “Partnering between pharma peers on the rise” of Nature Reviews Drug Discovery, explain how and why pharmaceutical–academia deals, such as the $100-million Pfizer pact with 8 academic Institutions from the Boston area, have been stealing headlines this year. In another recent brief mention in Nature, faculty members say that industry research has contributed to important work.

Life-science researchers in US universities receive $33,000 a year on average from the medical drug and device industry. […] More than half (51.9%) said they maintain a relationship with industry. The study found that such relationships provide significant benefits both to the researcher and to science. Among faculty members most involved with industry research, nearly half said it “contributed to their most important scientific work and led to research that would not otherwise have been possible”.

Exciting times. Still, challenges and caveats are obviously not absent. True collaborative environment between the partners, licensing/IP and publishing issues, technology transfer know-how, commercialization matters and different goals for each institution, are all issues that need to be seriously considered before teaming up in such consortia.

Graphene, the strongest material on earth, now produced from cookies, roaches and dog feces

Graphene is a material made of carbon. It is a particularly interesting material because in graphene, carbon manages to arrange itself in a sheet just one atom thick (see pic on the left). The material is so thin, that three million sheets of graphene on top of each other would be just 1mm thick. This one-atom thick sheet, densely packed in a honeycomb lattice, has excellent electrical, mechanical and thermal properties that make it the strongest material on earth, an improvement upon and a possible replacement for silicon, and the most conductive material known to man.

In 2004, physicists at the University of Manchester and the Institute for Microelectronics Technology, Chernogolovka, Russia, first isolated individual graphene planes by exfoliating graphite (i.e. the material used for pencils) using adhesive tape. Since 2009 it has been described as the strongest material on earth, 200 times stronger than steel. In 2010, the Nobel Prize in Physics was awarded to Andre Geim and Konstantin Novoselov, “for groundbreaking experiments regarding the two-dimensional material graphene”.

It would take an elephant, balanced on a pencil, to break through a sheet of graphene the thickness of Saran Wrap.

See through: Researchers have created a flexible graphene sheet with silver electrodes printed on it (top) that can be used as a touch screen when connected to control software on a computer (bottom). Credit: Byung Hee Hong, SKKU.

said Professor James Hone of Columbia University in a statement.

As for uses? It can be used for making up new materials and electronic devices. Sort of like plastics are used nowadays but with an extra touch of technology. It could be used for transparent electronics that are stronger, cheaper, and more flexible such as shown on the right. Professor Tour of Rice University said teasingly:

You could theoretically roll up your iPhone and stick it behind your ear like a pencil.

Graphene is usually made up from graphite. But as the demand for cheap and fast large-scale graphene production becomes imminent, it quickly became clear that making graphene by splitting graphite crystals using adhesive tape, had no future.

Now a team of researchers led by Prof Tour, managed at to grow graphene directly on the backside of a copper foil at 1050°C, using six easily obtained, low or negatively valued raw carbon-containing materials used without pre-purification (cookies, chocolate, grass, plastics, roaches, and dog feces). Read the full paper here. Thanks to Anastassia for the story!

Worst comes to worst you just might end up using up that pizza from last night to get a new rollable iPhone. And think twice before you scold your dog again for doing a #2 on the carpet!

%d bloggers like this: